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Abstract— We address the problem of choosing adequate
contact forces to ensure the stability of a multi-fingered grasp in
face of external disturbances of unknown intensity. The contact
forces we look for are tightening, pre-strain forces rather
than active, direction-related blocking forces. We compute such
tightening forces, together with blocking forces and a lower-
bound approximation of an existing grasp quality measure, in
only one linear programming problem. The tightening forces
ensure robustness to the largest-minimum resisted disturbance
wrench, but a variety of optimal contact forces may be further
computed from the desired robustness by solving a quadratic
programming problem.

Keywords— Multi-fingered hand, disturbances, robustness,
grasp quality measure, force optimization problem, linear
programming, quadratic programming.

I. INTRODUCTION

A. Statement of the problem

Nowadays still uncommon, humanoid robots are meant
to play an important part in our future daily lives. Yet our
everyday environment is particularly unfit to robots as we
know them. Complex, unstructured, and changing, it is the
cause of most of the problems robotics research has to tackle
in a variety of areas. In particular, in the domain of dextrous,
multi-fingered manipulation, it results in the requirement of
a certain amount of robustness in the robots’ prehensile
abilities. Safe interacting with human-beings means indeed
that keeping hold of objects in face of potential disturbances
is necessary: unexpected forces may happen, or estimates of
the object characteristics may be wrong.

Human grasps provide this level of robustness through
enveloping grasps or tightening contact forces that squeeze
the manipulated object in case a disturbance happens. These
tightening, pre-strain forces depend on the characteristics of
the disturbances that are expected to happen (directions and
intensities). In this work, we provide a method for computing
such contact forces. The problem that is investigated is
different from, though related to, what are known as the
force optimization problem and the problem of measuring
the quality of a grasp.

B. Related work

The force optimization problem is the problem of finding
optimal contact forces against one or several known external
wrenches, for instance gravity or a specified box in wrench
space (defined by lower and upper bounds on the force and
torque components). If there are several wrenches, the usual
approach is to solve several force optimization problems.

The force optimization problem has been extensively
studied, and solved by a variety of techniques. [1], [2]
discretize the contact cones and use linear programming to
compute optimal contact forces. [3], [4] also use discretized
contact cones and linear programming but compute optimal
contact primitive wrenches. [5], [6] use discretized cones and
quadratic programming: a quadratic criteria on the contact
force components has a better physical interpretation than
a linear one as it represents a force intensity. [7]–[9] use
exact contact cones and formulate the problem as a convex
optimization problem subject to linear matrix inequality
constraints (LMI). [10], [11] use the dual of the force opti-
mization problem; [10] also proposes a method for solving
efficiently a family of related force optimization problems.

Grasp quality measures are also numerous [12]. The most
common one is the criteria of the residual ball, or largest
ball [13]–[17], which was recently thoroughly explored by
the exact, analytical study of [18]. It measures the size of
the grasp wrench space GWS , i.e. the size of the set of all
possible resultant wrenches produced by the fingers on the
object, the magnitude of the contact forces being somehow
limited. This criteria states that the quality of the grasp is the
residual radius of the grasp wrench space, that is to say, the
radius of the largest origin-centered L2-ball of the wrench
space se∗3(R) that is fully contained in GWS . This index
measures the largest-minimum wrench that the grasp can
produce on the object. Equivalently, it measures the largest-
minimum disturbance wrench that the grasp can resist. By
largest-minimum we mean the largest produced or resisted
wrench in the direction of the wrench space for which this
wrench is the smallest (also known as the worst direction):
minw direction maxρ intensity(ρw), see also [12, page 10].

There are several variations of the criteria of the largest
ball. One of them may be called the criteria of the largest
disturbance polytope and was introduced by [19], [20].
This criteria uses a convex set of se∗3(R), including the
origin, instead of a ball. This set represents the expected
disturbances, or at least the disturbances the hand is supposed
to resist. The quality index is the largest scale factor that
makes this set of expected disturbances fully contained in
the opposite of the grasp wrench space, −GWS . It measures
the largest-minimum disturbance wrench that the grasp can
resist in the directions of the vertices of the convex set.

[20] gives an algorithm to compute this quality measure.
This algorithm consists of a set of linear or non-linear pro-
gramming problems, depending on whether the constraints



are linear or not (they are linear when the contacts are
frictionless, when the grasp is two-dimensional or when the
contact cones are linearized). There are as many program-
ming problems as disturbance directions in the convex set
used in place of the ball, which explains why this convex set
is a polytope in computer implementations.

C. Contribution
To ensure the grasp is stable in face of unknown dis-

turbances, we yield adequate tightening forces from the
set of expected disturbance directions in only one linear
programming problem with a variable in R3nc+1, nc being
the number of contacts (i.e. the number of fingers). This
linear program is obtained from a larger one with a variable
in (R3nc)nd+1, nd being the number of investigated distur-
bance directions, by considering the worst-case components
of the disturbances. This dimension reduction technique is an
alternative to solving a force optimization problem for each
disturbance direction. It should be noted that the dimension
of the resulting linear program does not depend on the
number of disturbances, which means that a large number
of disturbance directions may be considered simultaneously.

The linear program also computes a grasp quality measure,
avoiding the need to solve another as many optimization
problems as disturbance directions. This measure is both
different from and related to the quality measure of [20].
In fact, it is a lower-bound approximation of it.

The contact forces we compute are pre-strain forces rel-
ative to all the investigated disturbance directions, rather
than active blocking forces in each direction. They ensure
robustness in face of the largest-minimum acceptable dis-
turbance, however a variety of tightening forces may be
further computed from the desired robustness by solving a
quadratic program in R3nc . The tightening forces are to be
applied in the absence of any disturbance, not only during
the disturbance. We also compute the force variations that
turn this tightening into disturbance-blocking forces.

This is a difference to underline: in the classical formu-
lation of the force optimization problem, there is no notion
of pre-strain. Since the external wrench to resist is known,
only blocking forces against it are needed. On the contrary,
in our force optimization problem, there are also unknown
disturbances. In this case, tightening becomes very valuable
for the grasp to withstand a disturbance more easily. It also
reflects what many physiologists have observed, e.g. [21]:
grip forces increase before a disturbance, not only after.

In other words, optimality in the classical formulation of
the force optimization problem is a minimality: forces have
just the required magnitude to resist a given external wrench.
Our optimal forces have more than this required magnitude,
but they act as pre-strain and provide a kind of passive
robustness for the grasp, whereas the classical formulation
provides only active robustness where no tightening forces
are applied prior to any disturbance.

D. Outline of the paper
The rest of this paper is as follows. Notations and def-

initions are given in section II. In section III, we describe

the problem of grasp robustness and how to get tightening
forces against specified disturbances. In this introductory
section, the disturbances are supposed entirely known. In
section IV, the disturbance intensities are unknown and we
solve the problem of grasp robustness to the largest-minimum
disturbance wrench. We get robust tightening forces and an
index of grasp quality with respect to the disturbances it can
resist. Section V gives a simulation example and section VI
concludes the paper.

II. NOTATIONS AND DEFINITIONS

A. Basic notations

We let nc denote the number of contacts in the grasp and
i denote the index of a contact: i ∈ [|1, nc|]. The different
frames are illustrated on figure 1: ref is an inertial reference
frame, obj is the frame of the object being manipulated, and
ci denotes both the contact point between the object and the
i-th finger and the contact frame (~t1i ,~t

2
i , ~ni), with ~ni outward

and normal to the object’s surface.

Fig. 1. Frames and homogeneous transforms

Frames are related through homogeneous transforms, e.g.:

refHobj =
(

refRobj rrefref ,obj

01,3 1

)
∈ SE3(R)

locates the object relatively to ref through the rotation
refRobj ∈ SO3(R) between the bases of the frames and the
translation rrefref ,obj ∈ R3 from the origin of ref to the origin
of obj , this vector being written in ref coordinates.

B. Contact modeling

Contacts between the fingers and the object are modeled
as rigid point contacts with friction. The forces f1, . . . , fnc

∈
R3 applied by the fingers on the object are assumed written
in their respective contact frames c1, . . . , cnc

.
In sections III and IV we will take into account two

assumptions on the contact forces. The first one is that they
are unilateral (from the finger to the object): (fi)n ≤ 0, ∀ i ∈
[|1, nc|]. The notation ()n is for the normal component;
()t will denote the tangential one. The second assumption
results from the Coulomb friction conditions: no sliding of
the contact i occurs if ||(fi)t|| ≤ µ||(fi)n|| (figure 2). µ
denotes the dry friction coefficient.

It is well-known that the Coulomb non-sliding condition
may be linearized by approximating the contact cone with a
multi-faceted cone, and that the resulting linearized equations
also accounts for unilaterality. That is, if we define f =
(f1, . . . , fnc)

T the column vector of the contact forces,



Fig. 2. A non-sliding contact and its exact and linearized contact cones

we may find matrices C and d such that non-sliding and
unilaterality conditions read:

Cf + d ≤ 0nc×ne,1 (1)

C is (nc×ne, 3nc) in size, ne being the number of edges in
the cone discretization; d is a vector with nc×ne lines.

C. Object dynamics and grasp map
We let Vobj denote the absolute twist of the object and

Wf→obj denote the wrench applied on the object by the
fingers, both written in the frame of the object:

Vobj =

(
vobj = vobjobj/ref

ωobj = ωobj
obj/ref

)
Wf→obj =

(
ff = fobj

f→obj

mf = mobj
f→obj

)
vobj is the velocity of the object’s center of mass, ωk is its
angular velocity, both velocities are relative to the reference
frame. ff is the resultant force applied by the fingers and mf

is the moment of this force at the object’s center of mass.
All four quantities are written in the object frame.

We let mobj denote the mass of the object and [I]obj
denote its inertia tensor, written in the frame obj . Both
quantities are arranged into the object’s generalized mass
matrix: Mobj = diag (mobj I3, [I]obj ), at the center of mass
of the object.

The object dynamics is as follows:

Mobj (V̇obj − g) +NobjVobj = Wdp→obj (2)

where NobjVobj are the Coriolis forces, and all quantities are
written in the object frame. In particular, the gravity wrench
Mobj g and the resultant wrench applied by the fingers are:

Mobj g
def=
(
mobj I3 03,3

03,3 [I]obj

)(
objRref

(
0
0

−9.81

)
03,1

)
= mobj g (3)

Wf→obj =
nc∑
i=1

( objRci 03,3

r̂objobj ,ci

objRci
objRci

)(
fi

03,1

)
(4)

where
(

fi

03,1

)
is the wrench applied by finger i, andˆdenotes

the operation that returns a skew-symmetric matrix for cross-
product by the input vector: ~̂r~u = ~r× ~u. In the end, we get:

Wf→obj =

(
objRc1 . . . objRcnc

r̂objobj ,c1
objRc1 . . . r̂objobj ,cnc

objRcnc

) f1
...
fnc


def= Gf (5)

This matrix G is called the grasp map of the grip.

D. Disturbances

There may also be disturbances involved in the right-hand
side of the object’s equations of motion (2). We let Wdist ∈
se∗3(R) denote a disturbance on the object, written in the
object frame obj , and W 1

dist , . . . ,W
nd

dist ∈ se∗3(R) denote a
set of such disturbances, that may happen and that we want
the grasp to be able to withstand. We remind that the wrench
space se∗3(R) is the dual space of the twist space se3(R). j
denotes the index of a disturbance: j ∈ [|1, nd|].

III. THE PROBLEM OF GRASP ROBUSTNESS

A. Problem statement

The problem of grasp robustness against the disturbances
W 1

dist , . . . ,W
nd

dist ∈ se∗3(R) may be stated as follows: find
contact forces f1

0 , . . . , f
nc
0 ∈ R3 such that:

1) In the absence of any disturbance:
• The object’s equations of motion are satisfied.
• The contacts are non-sliding.
• The contact forces f1

0 , . . . , f
nc
0 are unilateral.

• Their intensities remain below a certain admissible
threshold.

2) ∀ j ∈ [|1, nd|], ∃ δf1
j , . . . , δf

nc
j ∈ R3 such that,

when the object is subject to the contact forces f1
0 +

δf1
j , . . . , f

nc
0 + δfnc

j and to the disturbance W j
dist :

• Its equations of motion are still satisfied.
• The contacts are still non-sliding.
• The forces f1

0 +δf1
j , . . . , f

nc
0 +δfnc

j are unilateral.
• Their intensities remain below the same admissible

threshold.
The force variations δf1

j , . . . , δf
nc
j enable the grasp to

withstand the disturbance j; however they are not part of
the tightening forces f1

0 , . . . , f
nc
0 . We define:

f0 =

(
f1
0...

fnc
0

)
∈ R3nc δfj =

(
δf1

j...
δfnc

j

)
∀ j ∈ [|1, nd|]

We can formulate the problem of grasp robustness against
W 1

dist , . . . ,W
nd

dist , nd ≥ 1, as follows:

Find f0 s.t. ∃ δf1, . . . , δfnd
s.t.

equations of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

G(f0 + δfj) +W j
dist =

Mobj (V̇obj − g) +NobjVobj ∀j ∈ [|1, nd|]
non-sliding contacts (friction cones):
||(f0)t|| ≤ µ ||(f0)n||
||(f0 + δfj)t|| ≤ µ ||(f0 + δfj)n|| ∀j ∈ [|1, nd|]

unilateral contact forces:
(f0)n ≤ 0nc,1

(f0 + δfj)n ≤ 0nc,1 ∀j ∈ [|1, nd|]
bounded contact forces:
||f0|| ≤ fmax
||f0 + δfj || ≤ fmax ∀j ∈ [|1, nd|]

(6)



The || || notation means:

||f0|| =

(
||f1

0 ||...
||fnc

0 ||

)
∈ Rnc ||(f0)n,t|| =

(
||(f1

0 )n,t||...
||(fnc

0 )n,t||

)
∈ Rnc

In a similar way, fmax is a vector of nc positive elements.
Studies about the force optimization problem usually as-

sume that the object is in static equilibrium: Vobj = 06,1,
V̇obj = 06,1. It is however possible to take explicitly the
object’s motion into account, merely by writing the equations
of motion rather than the equations of static equilibrium. An-
other possibility is to consider that Mobj V̇obj and NobjVobj

are negligible with respect to gravity and disturbances (which
is most often the case). In this case, the right-hand sides of
the equations of motion are reduced to −Mobj g = −mobj g
(see (3)), and we fall back to the equations of equilibrium.

B. Linearization of the grasp robustness problem

The linearization of the contact cones yields (see (1)):

non-sliding contacts and unilateral forces:
Cf0 + d ≤ 0nc×ne,1

C(f0 + δfj) + d ≤ 0nc×ne,1 ∀ j ∈ [|1, nd|]
(7)

As for the “bounded forces” constraints, we may write
||f0|| ≈ ||(f0)n|| = −(f0)n. This approximation is correct
when the friction cones are not too wide (the friction
coefficient is not too large); it means that they are truncated
by a plane at fmax -level. We define the (nc, 3nc)-matrix
E = diag (( 0 0 1 ) , . . . , ( 0 0 1 )), it is such that Ef0 = (f0)n.
The linearized “bounded forces” constraints are then:

bounded forces:
− Ef0 ≤ fmax
− E(f0 + δfj) ≤ fmax ∀ j ∈ [|1, nd|]

(8)

After these linearizations, the grasp robustness problem
may be rewritten:

Find f0 s.t. ∃ δf1, . . . , δfnd
s.t.

equations of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

Gδfj = −W j
dist ∀ j ∈ [|1, nd|]

non-sliding contacts and unilateral forces:
Cf0 ≤ −d
C(f0 + δfj) ≤ −d ∀ j ∈ [|1, nd|]

bounded forces:
− Ef0 ≤ fmax
− E(f0 + δfj) ≤ fmax ∀ j ∈ [|1, nd|]

(9)

We have (9)⇒ (6). Let us denote x = (f0, δf1, . . . , δfnd
)T

the unknown of (9). This problem is a system of linear equa-
tions and inequations in x. The dimension of the unknown
may be quite large, though not untractable: x ∈ (R3nc)nd+1.

We will see in section IV-A, (20), that it can be much
reduced. The system to be solved is:

Gx = Mobj (V̇ obj − g) +NobjV obj −W dist

Cx ≤ −d
−Ex ≤ fmax

(10)

G =

(
G
G . . .

G

)
g =

( g
06,1...
06,1

)
W dist =

 06,1

W 1
dist...

W
nd
dist


Mobj =

Mobj

06,6 . . .
06,6

 Nobj =

Nobj

06,6 . . .
06,6


V obj =

 Vobj

06,1...
06,1

 C =

(
C
C C...

. . .
C C

)
d =

(
d
d...
d

)

E =

(
E
E E...

. . .
E E

)
fmax =

( fmax

fmax...
fmax

)
C. Least-effort robust grasp, part one

As the equation in system (10) is under-determined, we
add an objective function to choose among its possible
solutions. It is physically sensible to minimize the (possibly
weighted) L2-norms of the contact forces:

Ql.e. = diag (Q0, Q1, . . . , Qnd
)

||x||2Ql.e.
= xTQl.e.x

= fT0 Q0f0 + δfT1 Q1δf1 + · · ·+ δfTnd
Qnd

δfnd

= ||f0||2Q0
+ ||δf1||2Q1

+ · · ·+ ||δfnd
||2Qnd

Eventually we get the following problem:

min
x

1
2
xTQl.e.x

Gx = Mobj (V̇ obj − g) +NobjV obj −W dist

Cx ≤ −d
−Ex ≤ fmax

(11)

When we solve this quadratic program, we find the tightening
forces f0 needed to realize a least-effort robust grasp against
the disturbances W 1

dist , . . . ,W
nd

dist .

IV. ROBUSTNESS TO THE LARGEST-MINIMUM
RESISTED DISTURBANCE WRENCH

We remind that by largest-minimum we mean the largest
resisted wrench in the direction of the wrench space for
which this wrench is the smallest (also known as the worst
direction): minw direction maxρ intensity(ρw).

A. Largest-minimum-disturbance robust grasp

Now we suppose that we have a unitary disturbance Wdist ,
indicating only a direction of disturbance. We are interested
in knowing the maximum disturbance λWdist , λ ≥ 0 (i.e. in
the same direction as Wdist ), such that the grasp is robust.
Or, we have a set of unitary disturbances W 1

dist , . . . ,W
nd

dist ,
defining a polytope of directions in wrench space, and we



are interested in knowing the largest scale factor λ ≥ 0
such that the grasp is robust to all the disturbances in the
scaled polytope. This is the problem of grasp robustness to
the largest-minimum resisted disturbance wrench:

Find f0 and maximum λ ≥ 0 s.t. ∃ δf1, . . . , δfnd
s.t.

equations of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

G(f0 + δfj) + λW j
dist =

Mobj (V̇obj − g) +NobjVobj ∀j ∈ [|1, nd|]
non-sliding contacts:
||(f0)t|| ≤ µ ||(f0)n||
||(f0+δfj)t|| ≤ µ ||(f0+δfj)n|| ∀j ∈ [|1, nd|]

unilateral forces:
(f0)n ≤ 0nc,1

(f0 + δfj)n ≤ 0nc,1 ∀j ∈ [|1, nd|]
bounded forces:
||f0|| ≤ fmax
||f0 + δfj || ≤ fmax ∀j ∈ [|1, nd|]

(12)

This is basically the same as (6), except that the distur-
bances are no longer fixed in intensity and that the scale
parameter λ is looked for together with the robust forces.

It must be noted that the disturbances W 1
dist , . . . ,W

nd

dist

need actually not be unitary, and the polytope they describe
needs not be regular. On the contrary, if a specific task to
realize makes some disturbance directions and/or intensities
more relevant than others, it is judicious to adapt the shape
of the polytope according to the shape of this task wrench
space: it provides better exploration of the relevant directions
of the wrench space during the scaling of the polytope, and
results in task-oriented robustness.

The optimization problem (12) may be linearized in the
same way as we did for (6). We get:

max
f0,δfj ,λ

(λ) subject to the constraints:

equations of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

Gδfj = −λW j
dist ∀ j ∈ [|1, nd|]

non-sliding contacts and unilateral forces:
Cf0 ≤ −d
C(f0 + δfj) ≤ −d ∀ j ∈ [|1, nd|]

bounded forces:
− Ef0 ≤ fmax
− E(f0 + δfj) ≤ fmax ∀ j ∈ [|1, nd|]

and also:
λ ≥ 0

(13)

The unknowns of this problem are f0, δf1, . . . , δfnd
and λ.

We reduce the dimension of the problem by considering that
the variables δf1, . . . , δfnd

are those of minimum norm that
meet the “equations of motion” conditions. That is to say, we

first solve the following nd auxiliary quadratic programming
problems:  min

δfj

1
2
δfTj Qjδfj

Gδfj = −λW j
dist

(14)

The physical interpretation of this assumption is that since
the hand is already squeezing the object with the tightening
forces f0, the force variations δfj that will make the hand
resist the disturbance λW j

dist are likely to be minimal and
just the required amount to compensate for the disturbance.

As for the Qj matrices, it is possible to understand them
as compliance matrices, accounting for a certain amount of
compliance in the fingers at their contact points with the
object. However, this interpretation is still work in progress
and needs further investigation.

It is easy to prove from the usual first-order optimality
conditions of (14) (gradient of the lagrangian with respect to
δfj and equality constraint) that the solution of (14) is :

δfj = −λG∗jW
j
dist

with G∗j = Q−1
j GT [GQ−1

j GT ]−1
(15)

The expression of G∗j is to be compared with the ex-
pression of the pseudo-inverse of the grasp map, G+ =
GT [GGT ]−1. It appears that G∗j is a weighted pseudo-
inverse, or a generalized inverse, of G.

We use (15) to make (13) become:

max
f0,λ

(λ) subject to the constraints:

equation of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

non-sliding contacts and unilateral forces:
Cf0 ≤ −d
Cf0 − CG∗jW

j
distλ ≤ −d ∀ j ∈ [|1, nd|]

bounded forces:
− Ef0 ≤ fmax
− Ef0 + EG∗jW

j
distλ ≤ fmax ∀ j ∈ [|1, nd|]

and also:
λ ≥ 0

(16)

Then, we compact the nd + 1 constraints “non-sliding
contacts and unilateral forces”:{
Cf0 ≤ −d
Cf0 − CG∗jW

j
distλ ≤ −d ∀ j ∈ [|1, nd|]

⇐

[
Cf0+max(0nc×ne,1,−CG∗1W 1

distλ, . . . ,−CG∗nd
Wnd

distλ)
≤ −d

⇔ Cf0+min(0nc×ne,1, CG
∗
1W

1
dist , . . . , CG

∗
nd
Wnd

dist)λ≤−d

where max (respectively min) is a vector whose k-th line
is the maximum (respectively minimum) element of the k-th
lines of its argument vectors.



We may similarly compact the “bounded forces” con-
straints, and in the end, if we define:

S1 = min(0nc×ne,1, CG
∗
1W

1
dist , . . . , CG

∗
nd
Wnd

dist) (17)

S2 = max(0nc,1, EG
∗
1W

1
dist , . . . , EG

∗
nd
Wnd

dist) (18)

we may write the following simplified problem from (16),
(17) and (18):

max
f0,λ

(λ) subject to the constraints:

equation of motion:

Gf0 = Mobj (V̇obj − g) +NobjVobj

non-sliding contacts and unilateral forces:
Cf0 + S1 λ ≤ −d

bounded forces:
− Ef0 + S2 λ ≤ fmax

and also:
λ ≥ 0

(19)

The reductions (17) and (18) are “worst-case” reductions.
We have: (19) ⇒ (16) ⇒ (13) ⇒ (12), and none of these
implications is an equivalence.

The dimension of the unknown has been much reduced;
we define this new unknown, x ∈ R3nc+1 and a companion
vector c:

x =
(
f0
λ

)
c =

(
03nc,1

1

)
λ = cTx (20)

Eventually, we rewrite (19) as the following linear pro-
gramming problem: 

min
x

(−cTx)

Aeq x = beq

Aneq x ≤ bneq

(21)

Aeq =
(
G 06,1

)
beq = Mobj (V̇obj − g) +NobjVobj

Aneq =

 C −S1

−E S2

−cT

 bneq =

 −dfmax
0


This problem can be solved efficiently by a variety of

algorithms. The solution λsol is a size index of the set of
disturbances the grasp is able to withstand; it measures the
largest-minimum resisted wrench in the investigated direc-
tions. The solution f sol

0 is the tightening forces to apply on
the object to realize a robust grasp against all the disturbances
in the scaled-by-λ polytope of disturbance directions.

The quality measure λsol looks similar to the one of [20]:
it is also a largest scale factor ρ that makes a convex compact
set of expected disturbance directions D fully contained in
the grasp wrench space GWS : maxρD⊂GWS ,ρ≥0(ρ). As we
reviewed earlier, the quality measure in [20] is computed
with as many linear programs as disturbance directions in
D, often a polytope. Contact forces are also computed as
by-products of those linear programs. Besides the fact that
we solve a different problem (we look for tightening contact
forces), our method is different in the following three points.

First, we only need one linear programming problem of
reduced dimension, in R3nc+1, to get our quality measure.
It is worth noting that:

1) Because of the successive linearizations (13), dimen-
sion reduction (14 to 16) and constraint combinations
(17 to 19), this measure is not exactly the measure
itself as we would have found if we had solved (12)
rather than (21), but an approximation of it.

2) The dimension of our linear program does not depend
on the number of disturbances, nd. Therefore, the
polytope of disturbance directions may have a complex
shape, with a lot of vertices, without impairing the
computational cost other than what is needed for the
computation of S1 and S2 (17 and 18). In contrast,
the usual approach is to solve nd linear programs in
R3nc+1, which may pose a problem if nd is too large.

Second, we take both known wrenches (gravity, but other
external loads may also be considered along with g) and
unknown wrenches (disturbances) into account.

Third, we distinguish between the forces that are applied
in the absence of any disturbance (f0) and those that are
applied during a disturbance (f0 + δfj). This is an important
distinction because it enables us to compute both tightening
forces, that act as pre-strain passive forces, and active block-
ing forces. In contrast, the forces computed by [20] and in
the classical formulation of the force optimization problem
are active ones, there is no notion of pre-strain. Despite the
similarities, our problem is different: our primary goal is to
compute tightening forces.

Because we make this difference, our robustness/quality
problem (12) has more constraints than the one of [20].
Namely, we have extra constraints, those on f0 alone. As
a result, our problem is conservative with respect to theirs,
and the quality index we find is a lower bound of theirs: the
more constraints, the more underestimated the grasp ability
to resist disturbances.

B. Least-effort robust grasp, part two

Once we have solved (21), we are able to go back
to (11) and find contact forces for a least-effort robust grasp,
with an unknown of much smaller dimension. We merely
modify (21) with another criteria, set λ in [0, λsol ] indicating
a desired level of robustness, and have f0 the only unknown.
We get the following quadratic programming problem:

min
f0

1
2
fT0 Q0f0

A′eq f0 = b′eq

A′neq f0 ≤ b′neq

(22)

A′eq = G b′eq = Mobj (V̇obj − g) +NobjVobj

A′neq =
(
C
−E

)
b′neq =

(
−d+ λS1

fmax − λS2

)
C. Integration in control frameworks

The integration of tightening abilities into already existing
controls of multi-fingered hands is easy. Computed-torque



controls, for instance, typically use the object dynamics
and the pseudo-inverse of the grasp map to get desired
contact forces from the desired motion of the object: f [d] =
G+(Mobj (V̇

[d]
obj − g) + NobjV

[d]
obj ) + f

[d]
I , where the [d]

superscript means desired and fI denotes the internal contact
force, that cannot produce any motion since in kerG, but
describes how hard the object is squeezed. Taking tightening
into account merely bounds to f [d]

I = f sol
0 , with f sol

0 either
the contact forces of the largest-minimum-disturbance robust
grasp (section IV-A, (21)) or the contact forces of a least-
effort robust grasp (section IV-B, (22)), with the right-hand
sides of the “equations of motion” constraints set to 06,1.
Indeed, this results in Gf sol

0 = 06,1, and in that way we are
sure that f sol

0 is an internal force.
In [22], we describe an optimization-based control of

dextrous manipulation that offers the advantage of trade-
off between many different desired values and constraints.
In particular, it enables easy addition of desired values: we
simply define f [d] = f sol

0 and an associated priority matrix.
The optimization basis of our control combines this desired
value with all the others, in particular with the one on f that
is due to the desired motion of the object.

V. A SIMULATION EXAMPLE

In this section, we demonstrate the tightening abilities our
robustness study brings to the optimization-based control
we describe in [22]. The example is a four-fingered hand
keeping hold of an object in the presence of disturbances. It is
simulated with ARBORIS, an open-source dynamical engine
for articulated rigid body mechanics, written in MATLAB
programming language at CEA/LIST and UPMC/ISIR [23].

A. Robustness at equilibrium

The robustness objective is as follows: the grasp should
be able to withstand disturbances in any of the six force
directions along the x, y and z axes of the reference frame,
up to 75% of the largest-minimum resisted wrench. That is
to say, we consider the following six disturbance directions,
written in ref :

W±x =

±1
0
0
0
0
0

 W±y =

 0
±1
0
0
0
0

 W±z =

 0
0
±1
0
0
0


We solve (21), section IV-A: we get the quality measure
λsol and appropriate contact forces for the largest-minimum-
disturbance robust grasp. Then we solve (22), section IV-
B, for λ = 0.75λsol : we get appropriate optimal contact
forces f sol

0 . Eventually, we set the desired tightening forces
at f [d] = f sol

0 , as explained in section IV-C.
The desired object motion is to remain at rest at the

object’s initial position. Gravity is set to zero and we use
eight-faces contact cones and a friction coefficient µ = 0.8.
Equations (21) and (22) are solved with a constraint fmax =
2 N for each finger force norm.

Disturbances are applied on the object successively in each
of the six directions. Their intensity is about 75% of the
intensity of the largest-minimum resisted wrench, that is to

say, ||W±x,y,zdist || ≤≈ 0.75λsol . They last 0.1 s each. The grasp
withstands all six disturbances; two of them are illustrated
on figure 3.

Fig. 3. Two disturbances (red arrows, left) are withstood by the hand
(center), which then returns to equilibrium (right)

On the contrary, if the same disturbances happen when
the control of the hand does not provide any robustness,
it is no wonder that they result in the hand losing grip,
figure 4. In this figure, the same manipulation was executed
with the tightening objective emulated with desired normal
contact forces accounting for some light tightening: (fi)

[d]
n =

0.5 N ∀ i ∈ [|1, 4|]. It is not possible to increase this objective
very much because it is not neutral with respect to the
static equilibrium of the object: a larger objective provides
more tightening but hinders static equilibrium. In contrast,
the robustness objective we design in this paper offers the
advantage of taking into account the object’s equation of
motion (or static equilibrium, in this case).

Fig. 4. No robustness objective results in poor grasp in face of disturbances

B. Robustness in motion
Now the same four-fingered hand is subject to gravity and

supposed to translate the object 2 cm backwards, along −y,
from t = 1 s to t = 3 s. This desired object motion is plotted
in black on figure 5. During the motion, a disturbance along
+x happens at t = 2 s. Except the motion and gravity,
everything remains the same as previously, in particular
the robustness objective and the intensity and duration of
the disturbance. The grasp withstands the disturbance and
completes successfully its motion objective. Figure 5 plots
the position of the center of the object during the disturbed
motion.



Fig. 5. The motion of the grasped object is disturbed along +x but the
robustness objective ensures that the hand does not lose its grip on the
object, enabling it to complete the motion. On the bottom plot, the object
desired trajectory is regenerated after the disturbance is detected, giving the
hand a more human-like response time than on the top plot.

VI. CONCLUSION

In this paper, we compute pre-strain tightening forces pro-
viding direction-independent robustness for a multi-fingered
grasp, by merging the problems of grasp quality measure
and contact force optimization. We deal with these problems
by solving a linear programming problem and a consecutive
quadratic programming problem, both of reduced dimen-
sions and with no dependence on the number of expected
disturbance directions. We are also able to find blocking
contact forces against the disturbances, and a lower-bound
approximation of the quality measure of [20].

A limitation of our robustness study is that it implicitly
assumes that the grasp is infinitely rigid, with fixed contacts
and fingers so stiff that we do not have to take them into
account. However, during a disturbance, it is definitively not
the case. Future work should model the compliance of the
fingers and of the grasp. In particular, the part played by the
compliance matrices of (14) and (15) should be investigated.
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[17] Máximo Roa and Raúl Suárez. Finding locally optimum force-closure
grasps. Robotics and Computer-Integrated Manufacturing, 25(3):536–
544, June 2009.

[18] Yu Zheng and Wen-Han Qian. Improving grasp quality evaluation.
Robotics and Autonomous Systems, 57(6–7):665–673, June 2009.

[19] Xiangyang Zhu, Han Ding, and Hanxiong Li. A quantitative measure
for multifingered grasps. In IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, volume 1, pages 213–219, July
2001.

[20] Xiangyang Zhu, Han Ding, and Jun Wang. Grasp analysis and
synthesis based on a new quantitative measure. IEEE Transactions
on Robotics and Automation, 19(6):942–953, December 2003.

[21] Yvonne N. Turrell, François-Xavier Li, and Alan M. Wing. Grip force
dynamics in the approach to a collision. Experimental Brain Research,
128:86–91, 1999.

[22] Romain Michalec and Alain Micaelli. Dynamic optimisation-based
control of dextrous manipulation. In IFAC International Symposium
on Robot Control, September 2009.
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