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Abstract: We present a dynamic optimization-based control for dextrous manipulation with a
multi-fingered hand. The formulation of the manipulation problem as an optimization problem
enables computation of the best possible control with respect to user-defined criteria, trade-off
between the many different and possibly conflicting equations the hand/object system must
comply with, and easy removal or addition of such equations. In this paper, control of object
motion and of contact forces is provided, as well as management of non-sliding contacts, motor
constraints, joint limits and articular redundancy.

Keywords: Multi-fingered hand control, quadratic programming, position/force control,
optimization

1. INTRODUCTION

Because of their high versatility and their contribution to
anthropomorphic identification, multi-fingered hands are
choice end-effectors for humanoid robots. For instance,
assistance robots for the ill, the disabled, or the elderly are
intended to perform a huge variety of dexterity-demanding
tasks in human-adapted environments. Therefore, it is
wiser to endow them with human-like end-effectors rather
than specialized grippers. The variety of tasks to be
performed and the considerable amount of dexterity they
require also underline the need for efficient, reliable, and
versatile control structures for multi-fingered hands.

Numerous controls for dextrous, i.e. skillful, manipulation
have been designed since the engineering of the first multi-
fingered robot hands in the eighties (Salisbury, 1982),
(Jacobsen et al., 1984). The majority of them use the
equations of motion of the hand, the equations of motion
of the object, and the pseudo-inverse of the grasp map
to compute articular motor torques (e.g. Chen and Zribi,
2000, section 4). A drawback of this classical method is
the possible non-optimality of the computed torques and
articular configuration during the motion. It is also diffi-
cult to take into account multiple objectives or additional
constraints, such as joint end stops or motor limitations.

It is possible to overcome these drawbacks by formulating
the manipulation problem as an optimization problem con-
strained by the equations of motion. Additional equations
are formulated into additional criteria or constraints, and
optimality of multiple criteria is possible. This method
may be properly described as a computed-torque method
subject to criteria and constraints.

Optimization-based motion control has been first studied
by (Wieber, 2000), (Collette et al., 2007), (Collette et al.,
2008), (Abe et al., 2007) and (da Silva et al., 2008) for
walking, standing or balance control of humanoid robots.

Fig. 1. Five-fingered robot hand manipulating the Earth

In computer graphics, (Liu, 2008) uses an optimization
technique for hand motion synthesis, but does not compute
motor torques, as control is not a CG problematic. To
the best of our knowledge, optimization-based motion
control of humanoids has not yet been ported, adapted
and implemented in the domain of robot hand control.

This paper does this work. It presents a dynamic opti-
mization-based control for dextrous manipulation with a
multi-fingered robot hand. Control of object motion and
of contact forces is provided, as well as management of
non-sliding contacts, motor constraints, joint limits and
articular redundancy. A complementary paper (Michalec
and Micaelli, 2009) explains how to design adequate con-
tact forces to have the grasp withstand a set of expected
disturbances and achieve robust manipulation.

The formulation of the manipulation problem as an op-
timization problem allows for computation of the best
possible control, with respect to user-defined criteria. It
also enables trade-off between the different and possibly
conflicting equations the hand/object system must comply
with, and easy removal or addition of such equations.

The rest of this paper is as follows. The equations of the
system are given in section 2, its control is presented in
section 3. A simulation example is given in section 4 and
section 5 concludes the paper.



2. SYSTEM KINEMATICS AND DYNAMICS

Our hand is illustrated on figure 1. It is composed of three
to five anthropomorphic fingers arranged in a human-like
way. Each finger is made of three phalanxes and three
joints. The proximal joint has two degrees of freedom for
abduction/adduction and flexion/extension.

The hand was simulated using Arboris, a dynamical
engine for articulated rigid body mechanics created at
CEA/LIST and UPMC/ISIR (Micaelli and Barthélémy,
2006). It is an open-source object-oriented toolbox for
Matlab designed with simplicity and ease-of-use in mind,
allowing for control and simulation of articulated systems
with numerous non-permanent contacts, especially virtual
humans (Collette et al., 2007). It is targeted at rapid
prototyping and benchmarking of robots and controls, hu-
man motion analysis and as an educational tool. Computer
animation is not a primary goal of Arboris, however
elaborate skinning of the skeletal animations it produces
may be done with dedicated software.

All the segments in our hand are considered as rigid bodies.
The root body of this tree structure, the palm, is fixed and
cannot move. All the joints are torque-driven.

2.1 Basic notations and definitions

We let nf ≥ 2 denote the number of fingers, nb = 3nf
the number of rigid bodies (excluding the root body), and
ndof = 4nf the number of degrees of freedom. i and k
denote respectively the indexes of a finger and a segment:
i ∈ [|1, nf |], k ∈ [|0, nb|], 0 is for the palm.

Each body in the hand comes with its own frame attached
at its centre of mass (figure 2). ref is an inertial reference
frame, root is the frame of the palm, dpi is the frame
of the i-th distal phalanx, and obj is the frame of the
object being manipulated. ci denotes both the contact
point between the object and the i-th distal phalanx and
the contact frame (t1i , t

2
i ,ni), with ni outward and normal

to the object’s surface (figure 2).

Fig. 2. Frames and homogeneous transforms

Each body is located through a homogeneous transform
between the inertial frame and its own frame. For instance:

refHdpi =
(

refRdpi r
ref
ref ,dpi

01,3 1

)
∈ SE3(R)

locates the i-th distal phalanx relatively to ref through
the rotation refRdpi ∈ SO3(R) between the bases of the

frames and the translation rrefref ,dpi
∈ R3 from the origin of

ref to the origin of dpi, this vector being written in ref
coordinates (figure 2).

The mass and inertia of body k are arranged into the
body’s generalized mass matrix: Mk = diag (mkI3, [I]k),
where mk is the mass of body k and [I]k is its inertia
tensor written in its own frame.

q = (q1, . . . , qndof
)T denotes the column vector of articular

coordinates and τ = (τ1, . . . , τndof
)T denotes the column

vector of driving torques.

2.2 Hand kinematics

We let Vk denote the twist of body k, written in the own
frame of body k. That is to say:

Vk =

(
vk = vkk/ref
ωk = ωkk/ref

)
with vk the velocity of the center of mass of body k
and ωk the angular velocity of body k, both relative to
the reference frame and written in the frame of body k.
All velocities from now on are absolute (relative to the
reference frame) but written in the adequate body frame,
except if stated otherwise.

We may write the direct kinematic model as:
Vk = J̃k ˜̇q = Jk q̇

with ˜̇q the subset of q̇ involved in the kinematic chain
between the palm and k-th body, J̃k the jacobian of this
chain, and Jk being obtained from J̃k by padding with
zeros where appropriate. Then we stack all the Vk and Jk
together and get:

V = J T (1)

V =

 Vroot

V1

...
Vnb

 J =

 Jroot

J1

...
Jnb

 T =

 Vroot
q̇1

...
q̇ndof


The resulting (6 + 6nb, ndof ) jacobian matrix maps the
joint velocity space into the body twist space se3(R)1+nb .

2.3 Contact modeling

Contacts between the distal phalanxes and the object are
modeled as rigid point contacts with friction. The forces
fi ∈ R3 applied by the fingers on the object are assumed
written in their respective contact frames ci.

A first constraint on the contact force fi is that it must
remain unilateral: (fi)n ≤ 0. The notation ()n is for the
normal component; ()t will denote the tangential one.

A second constraint results from the Coulomb friction
conditions. They state that no sliding of the contact
occurs if ||(fi)t|| ≤ µ||(fi)n|| (figure 3). µ denotes the dry
friction coefficient; we assume that the static and dynamic
coefficients are equal.

It is well-known that the Coulomb non-sliding condition
may be linearized by approximating the contact cone with
a multi-faceted cone (figure 3), and that the resulting
linear constraint also accounts for unilaterality. That is,
if we define f = (f1, . . . , fnf )T the column vector of all the



Fig. 3. A non-sliding contact, its exact and linearized cones

contact forces, we may find matrices C and d such that all
the non-sliding and unilaterality constraints read:

Cf + d ≤ 0nf×ne,1 (2)
C is (nf × ne, 3nf ), ne being the number of edges in the
cone discretization; d is a column vector with nf×ne lines.

2.4 Hand dynamics

The hand dynamics is the usual inverse dynamic model for
robot manipulators:

JTMJ (Ṫ − G) +NT − JTWhand = L τ (3)
In this system of 6 + ndof equations, J is the jacobian
defined in (1), NT are the inertial and Coriolis forces, G
is for gravity, Whand denotes external wrenches that may
be applied on the hand’s segments:

M=

Mroot

M1

. . .
Mnb

 Whand =

Wroot

W1

...
Wnb

 L=
(

06,ndof

Indof

)
G =

(
0 0 −g̃ | 01,3 | 01,ndof

)T
g̃ = gravity intensity

Each Wk denotes the external wrench applied on body k,
written in the own frame of body k. That is to say:

Wk =
(
fk = fkext→k
mk = mk

ext→k

)
with fk the force applied on body k and mk the moment
of this force at the center of mass of body k, both written
in the frame of body k. From now on, all wrenches are
written in their appropriate body frame, except if stated
otherwise.

From a control point of view, most Wk are zero, except
Wdpi that are the contact wrenches resulting from the
forces −f1, . . . ,−fnf applied by the object on the fingers.

2.5 Relation between contact forces and object motion

The object motion is the result of contact and gravity
forces. Disturbances may also happen but are unknown
to the controller. From a control perspective the object
dynamics is:

Mobj (V̇obj − g) +NobjVobj = Wdp→obj (4)
where all quantities are written in the object frame. In
particular, the gravity wrench Mobj g and the resultant
wrench applied by the fingers on the object are:

Mobj g
def=
(
mobj I3 03,3

03,3 [I]obj

)(
objRref

(
0
0
−g̃

)
03,1

)
= mobj g (5)

Wdp→obj =
nf∑
i=1

objAd−Tci Wdpi→obj (6)

where objAd−Tci is the co-adjoint matrix of objHci and
Wdpi→obj is the wrench applied by finger i:

objAd−Tci =
( objRci 03,3

r̂objobj ,ci
objRci

objRci

)
Wdpi→obj =

(
fi

03,1

)
with ˆ denoting the operation that returns a skew-
symmetric matrix for cross-product by the input vector:
r̂u = r × u. In the end, we get:

Wdp→obj =
( objRc1 ... objRcnf

r̂obj
obj ,c1

objRc1 ... r̂
obj
obj ,cnf

objRcnf

)( f1

...
fnf

)
def= Gf (7)

This matrix G is called the grasp map of the grip.

2.6 Joint constraints

Actuators are not infinitely powerful. We must compute
the control torques according to the following constraints:

τmin ≤ τ ≤ τmax (8)

Robot joints have end stops. We make the control aware
of these limits so that it does not try to break them. We
integrate the articular acceleration using backward Euler
integration: q̇t = q̇t−dt + q̈tdt and qt = qt−dt + q̇tdt. With
these two equations we get: qt = qt−dt + q̇t−dtdt+ q̈tdt

2.

Therefore do constraints on qt result in constraints on q̈t:
qmin ≤ qt ≤ qmax ⇒
(qmin − qt−dt − q̇t−dtdt)

dt2
≤ q̈t ≤

(qmax − qt−dt − q̇t−dtdt)
dt2

The resulting constraints have the following form:
q̈min(qt−dt, q̇t−dt) ≤ LT Ṫt ≤ q̈max(qt−dt, q̇t−dt) (9)

3. DYNAMIC OPTIMIZATION-BASED CONTROL

In the previous section, we list several equations that
the hand/object system must absolutely meet. For in-
stance, consistency of the control torques with the dynamic
model (3) is such an equation, and the most important.

The constraints we enumerated are summarized in table 1,
together with the unknowns they are relative to.

Table 1. Constraints and their unknowns

Constraint Unknowns

(2) Cf + d ≤ 0nf×ne,1 f

(3) JTMJ (Ṫ − G) +NT − JTWhand = L τ Ṫ , f , τ
(8) τmin ≤ τ ≤ τmax τ

(9) q̈min (qt−dt, q̇t−dt) ≤ LT Ṫt ≤ q̈max (qt−dt, q̇t−dt) Ṫ

Other equations the hand/object system need not meet
perfectly, but should comply with to the best of its
abilities, are criteria to optimize. Objectives are such
equations, as they are not always guaranteed to be feasible.

Eventually the control problem may be written as a
constrained optimization problem:

optimize criteria
with respect to the variables τ , Ṫ , f
and subject to the constraints (2), (3), (8), (9)

(10)

The resulting optimal τ is the vector of control torques
at the current time. The following subsections present the
equations that form the criteria to optimize.



3.1 Desired object motion

Equation (4) shows that the object motion V̇obj must be
controlled throughWdp→obj , i.e. through the contact forces
f . That is to say, a user-specified high-level objective on
V̇obj induces a lower-level objective on the variable f .

We let rootH
[d]
obj ∈ SE3(R) and V

[d]
obj/root ∈ se3(R) denote

desired trajectories for the object, respectively in position
and orientation and in linear and angular velocities. Both
are relative to the palm, as it is a natural reference frame
for object manipulation.

We have the following expressions for the quantities to
control, and the same expressions with a [d] superscript
for their desired values:

rootHobj =
(

rootRobj r
root
root,obj

03,1 1

)
Vobj/root =

(
vobjobj/root

ωobj
obj/root

)
The errors are as follows, all written in obj coordinates:

εx = objRroot (rroot,[d]root,obj − r
root
root,obj )

εR = [skew (rootRTobj
rootR

[d]
obj )]

∨

εv = v
obj ,[d]
obj/root − v

obj
obj/root

εω = ω
obj ,[d]
obj/root − ω

obj
obj/root

(11)

with skew () denoting the skew-symmetric part of a matrix
and ∨ being the operation that returns a vector for cross-
product from a skew-symmetric matrix.

We use these errors to design a proportional-derivative
corrective action for the object motion V̇obj/root , and since
Vobj/root = Vobj because we assumed that the palm does
not move, we write:

V̇
[d]
obj = V̇

[d]
obj/root =

(
kx εx + kv εv
kR εR + kω εω

)
(12)

The gain matrices kx, kR, kv and kω are (3, 3) diagonal
matrices whose coefficients have effect on the obj coordi-
nates of the errors.

Using (4) and (12), we get the following expression of the
wrench that should be applied on the object:

W
[d]
dp→obj = Mobj (V̇ [d]

obj − g) +NobjVobj (13)

In our optimization problem (10), we minimize the dif-
ference between the wrench that should be applied and
the wrench that may be applied considering the constraint
equations. Hence the following optimization criteria:

min
f

1
2
||W [d]

dp→obj −Wdp→obj ||2QW

= min
f

[
1
2
WT
dp→objQWWdp→obj +WT

dp→obj rW

] (14)

with rW = −QWW [d]
dp→obj and QW a weight matrix for this

criteria (symmetric positive-definite matrix). Eventually
we use (7) and (14) and get this criteria:

min
f

1
2
||W [d]

dp→obj −Wdp→obj ||2QW

= min
f

[
1
2
fTQobj f + fT robj

] (15)

with Qobj = GTQWG, robj = GT rW = −GTQWW [d]
dp→obj .

3.2 Other objectives about the contact forces

It may be that the desired object motion is not the only
objective on the contact force variable f . Usually, we also
want the hand to apply a certain amount of squeezing on
the object, especially to resist potential disturbances.

Basic squeezing can be achieved by specifying an adequate
normal objective: f [d] = (0, 0, (f1)[d]n , . . . , 0, 0, (fnf )[d]n )T .
The corresponding criteria is:

min
f

1
2
||f [d] − f ||2Q′

f
= min

f

[
1
2
fTQ′ff + fT r′f

]
(16)

with r′f = −Q′ff [d]. Careful choice of the Q′f weight matrix
is the key to take the best advantage of the trade-off nature
of the optimization. First, it should not outweight Qobj for
the manipulation to be considered as prioritary upon the
tightening. Second, the coefficients in Q′f relative to the
zeros in f [d] should be much smaller than those relative
to the (fi)n, because these zeros are bogus objectives (the
criteria lays on (f)n, not on (f)t) that could interfere with
the other objectives if not non-prioritary.

An asset of this method is that the objective is easy to
design, but a drawback is that it is not neutral with respect
to the object static equilibrium. Indeed, in most finger
configurations, such normal contact forces induce a non-
zero, unmodelled wrench on the object, prone to hinder
the manipulation task.

A much proper method of specifying a tightening task
is through a global desired robustness, i.e. we keep cri-
teria (16) but design f [d] in a better way: see (Michalec
and Micaelli, 2009).

3.3 Non-sliding objective

Non-sliding contacts are characterized by the nullity of
their sliding velocity: vs = vci∈dpi/obj = 03,1.

We should provide for the satisfaction of this equation
through a constraint on the contact acceleration, which
would induce a constraint on the joint accelerations Ṫ . But
this would be too restrictive a constraint and (10) could
become over-constrained. We rather write an objective on
the contact acceleration, resulting in a criteria on Ṫ .

We let ci ∈ obj denote the i-th contact point on the
object and ci ∈ dpi denote the same contact point, but
on dpi. Both points are at the same place, but may
have different velocities, and the sliding velocity is this
difference: vs = vci∈dpi/obj = vci∈dpi − vci∈obj .
We control ci ∈ dpi to limit sliding through the following
objective: v[d]

ci∈dpi = vci∈obj . In this way, we make sure

that the error εs = v
[d]
ci∈dpi − vci∈dpi = −vs is minimized.

We use a simple derivative correction: v̇[d]
ci∈dpi = ks εs =

ks (v[d]
ci∈dpi − vci∈dpi).

It is only a matter of adjoint matrices and of using (1)
to prove that v[d]

ci∈dpi = Π ciAdobjVobj and that vci∈dpi =
Π ciAddpiVdpi = Π ciAddpiJdpiT , with Π = (I3 03,3). Thus
v̇
[d]
ci∈dpi = ks (Π ciAdobjVobj −Π ciAddpiJdpiT ).



Derivation of the expression of v̇ci∈dpi yields:

v̇ci∈dpi = Π ciAddpiJdpi Ṫ + Π ciAddpi J̇dpiT
def= F Ṫ + Ḟ T

We do not take ˙ciAddpi into account because ci ∈ dpi is
supposed fixed on dpi.

In the end, the criteria is:

min
Ṫ

1
2
||v̇[d]
ci∈dpi − v̇ci∈dpi ||

2
Qci

= min
Ṫ

[
1
2
ṪTQsṪ + ṪT rs

] (17)

with Qs = FTQciF and rs = FTQci(Ḟ T − v̇
[d]
ci∈dpi).

This criteria is for one non-sliding contact only; we may get
a similar criteria relative to all the contacts, and similar Qs
and rs, by concatenating adequately vectors and matrices.

3.4 Other objectives

Among all motor torques τ that satisfy the previous
constraints and objectives, reason tells to choose the
smallest for motor’s sake. Hence τ [d] = 0ndof ,1 and:

min
τ

1
2
||τ [d] − τ ||2Qτ = min

τ

[
1
2
τTQττ + τT rτ

]
(18)

where Qτ is an non-prioritary weight matrix and rτ =
−Qττ [d] = 0ndof ,1.

Control computation should also take into account the
physiological coupling between the distal and intermediate
phalanxes: the former’s articular coordinate is partially
set by the latter’s. The coupling is usually considered
as almost linear, and constraints between qdist = 2

3qmid

(Rijpkema and Girard, 1991) and qdist = qmid (Biagiotti
et al., 2003) are of common use. It is better to make this
coupling an objective rather than a constraint as it has
anatomical precision: fairly large errors are accepted.

We use a simple articular proportional-derivative correc-
tive action with desired values q[d]dist = qmid and q̇

[d]
dist = 0:

q̈
[d]
dist = kqdist (q[d]dist − qdist) + kq̇dist (q̇[d]dist − q̇dist)

Then we define the objectives q̈
[d]
other = 0 as we did

for the desired contact forces in (16), concatenate those
objectives, define an adequate weight matrix Qq and write:

min
Ṫ

1
2
||q̈[d] − LT Ṫ ||2Qq = min

Ṫ

[
1
2
ṪTQ′

Ṫ
Ṫ + ṪT r′

Ṫ

]
(19)

with Q′
Ṫ

= LQq L
T and r′

Ṫ
= −LQq q̈[d].

This last criteria is important because it helps manage
the redundancy of the finger kinematic chains. It improves
the visual realism of the grasp by limiting unusual, un-
anatomical joint configurations, without totally reducing
finger redundancy.

3.5 Summary

We end up with the criteria summarized in table 2.

We define the unknown y = (τ, Ṫ , f)T and the matrices:

Q =

(
Qτ

QṪ=Qs+Q
′
Ṫ

Qf=Qobj +Q
′
f

)
r =

( rτ
rṪ=rs+r

′
Ṫ

rf=robj +r
′
f

)

Table 2. Criteria and their unknowns

Objective Criteria Unknowns

(15) W
[d]
dp→obj

, QW → minf
[

1
2
fTQobj f + fT robj

]
f

(16) f [d], Q′f → minf
[

1
2
fTQ′ff + fT r′f

]
f

(17) v̇
[d]
ci∈dpi

, Qci → minṪ

[
1
2
ṪTQsṪ + ṪT rs

]
Ṫ

(18) τ [d], Qτ → minτ
[

1
2
τTQτ τ + τT rτ

]
τ

(19) q̈[d], Qq → minṪ

[
1
2
ṪTQ′

Ṫ
Ṫ + ṪT r′

Ṫ

]
Ṫ

We also define Aeq, beq, Aneq and bneq such that (2), (3),
(8), and (9) end up as Aeq y+beq = 0 and Aneq y+bneq ≤ 0.
Eventually, the optimization-based control computation is:

min
y

1
2
yTQy + yT r

Aeq y + beq = 0
Aneq y + bneq ≤ 0

(20)

This constrained quadratic programming problem may be
solved using a variety of algorithms. From its solution ysol
we get τ sol , the optimal control torques that comply with
all the constraints and criteria.

4. A SIMULATION EXAMPLE

In this section, we demonstrate the use of our control
in a simple manipulation task involving translation and
rotation of a spherical object by a four-fingered hand.

The desired motion is illustrated on figure 4. It is made
of three parts. During the first part, from 1 s to 2 s, the
desired motion is set to the initial position of the object.
From 2 s to 3 s, it is made of a rotation of 45◦ around the
object’s y axis in 0.5 s and of a translation of 2 cm along
the same y axis in 1 s. From 2 s to 3 s, it is at rest again.

Fig. 4. Desired motion for the object body frame

The time gap from 0 s to 1 s is for the hand to set contact
on the object. Its initial articular posture encircles the
object and contact is set through proportional-derivative
control of the end of the distal phalanxes. This control is
itself embedded as a criteria in a simplified and adapted
version of our optimization-based control.

A contact force objective accounts for light squeezing of
the object with normal forces (fi)

[d]
n = 0.5 N ∀ i ∈ [|1, 4|]:

see (16), section 3.2. As we explained in this section,
choosing a larger objective for more tightening may hinder
motion control. For the same reason, the priority of this
objective is well below the priority of the desired object
motion: we set Q′f = 10 I3nf � QW = 10000 I6.



All the weight matrices we use are diagonal for convenience
(table 3). Gravity is set to zero and we use ne = 8
and µ = 0.8 for all the contacts. Figure 5 illustrates
the resulting tracking of the desired trajectory. Errors are
small and are the result of our controller’s design to try
and satisfy multiple objectives and multiple constraints.

Table 3. Weight matrices for the criteria

(15) object motion QW = 10000 I6
(16) object tightening Q′f = 10 I3nf
(17) non-sliding contacts Qci = 10000 I3nc
(18) minimal motor torques Qτ = 1 Indof

(19) coupling of distal and middle joints Qq = 1000 Indof

Fig. 5. Tracking of the object desired trajectory

Figure 6 illustrates the trade-off nature of this control:
the same manipulation was executed at QW = 1000 I6
and Q′f = 3000 I3nf for more tightening. As a result, the
manipulation task is impaired. As we already mentionned,
this is not a correct way to take robustness into account.

Fig. 6. A bad choice of weight matrices impairs tracking

5. CONCLUSION

In this paper, we proposed a dynamic optimization-based
control for dextrous manipulation inspired by the work of
(Collette et al., 2007) and (Abe et al., 2007) on humanoid
motion control. The method is best described as computed
torque with constraints and criteria. It allows for trade-
off between the different objectives and constraints, and
is easily adaptable through addition or removal of such
equations, or adjustment of weight matrices.

For instance, it is possible to endow the grasp with ro-
bustness abilities in face of possible disturbances through
properly-designed contact force objectives. In (Michalec
and Micaelli, 2009), we compute pre-strain forces provid-
ing direction-independant robustness for the grasp.

Future work includes optimization-based control of palm
motion and sliding contacts. Palm usage enlarges the
motion range of feasible manipulations. Controlled slip
is of such a constant use in our everyday manipulations,
especially during grasp reconfigurations, that any dextrous
control should account for it. However there are few studies
addressing this aspect of dextrous manipulation.
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