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Abstract— The stiffness control of an object grasped by a
multi-fingered robot hand requires the modeling of the elastic
behavior of the object, caused by the stiffness of the fingers.
Because of the presence of rolling contacts between the fingers
and the object, such a modeling is not a trivial issue, and a very
different one from the case of simpler parallel manipulators.
We provide here a first expression of the cartesian stiffness
matrix produced on the object, as a function of the cartesian
stiffness matrices of the fingers, in the case that the contacts are
non-sliding point contacts that may freely roll (on the tangent
plane) and twist (around the contact normal). We show that this
expression of the object-level cartesian stiffness matrix depends
also on the contact forces and on the local geometries of the
contacting surfaces.

Keywords— Multi-fingered hand, stiffness control, stiffness
matrix, rolling contacts.

I. INTRODUCTION

A. Problem statement

1) Stiffnesses at joint level and phalanx level: In a robotic
multi-fingered hand, each joint of each finger may have a
certain, characteristic stiffness, termed passive when it arises
from structural reasons and active when it results from motor
control. These articular stiffnesses may be put together in
a characteristic joint stiffness matrix for each finger. Let
Kart,i denote this stiffness matrix for finger i. It is a square
(ndof,i, ndof,i) matrix, with ndof,i the number of degrees of
freedom of finger i. Its diagonal terms are the stiffnesses
of the joints and its off-diagonal terms, if any, are stiffness
couplings between the joints.

This articular stiffness of finger i results in an equivalent
(6, 6) cartesian-space stiffness, at distal phalanx level (i.e. at
end-effector level). We let Kdpi

denote this cartesian stiffness
matrix for finger i, at phalanx level, written in the phalanx
body-fixed frame.

The relation between Kart,i and Kdpi
is not exactly a

standard change of frame formula between the joint and
cartesian spaces, contrary to what was commonly admitted
since the early works of Salisbury [1]. That is to say,
Kart,i 6= JTi Kdpi

Ji, with Ji the jacobian matrix of finger i.
Rather, an additional term must be taken into account, as
explained twenty years later by Chen and Kao [2], [3]:
Kart,i − Kg,i = JTi Kdpi

Ji. This is because the changes
in the geometry of the finger as it moves under the effect of
the contact force between the end-effector and the object, as
well as the value of this contact force, both play a part in the
resulting stiffness Kdpi

. The additional term Kg,i describes
their contribution to the resulting stiffness at phalanx level.

2) Resulting stiffness at object level: When the robot hand
grasps an object, the finger stiffnesses induce a total resulting
cartesian-space stiffness at object level. We let Kobj denote
the (6, 6) cartesian stiffness matrix, at object level, written
in the object body-fixed frame.

It is clear that if the contacts were fixtures, then this
resulting object stiffness would just be the sum of the
cartesian stiffnesses Kdpi

, modulo changes of frame between
the object and the distal phalanxes. See, for instance, [4,
equation 7], where the stiffnesses to add describe simple,
one-dimensional springs, or [5, end of section 3], where they
are more general.

However, fingertips are generaly not fixed on the object.
If they are round, they may roll on the surface of the object,
and they probably will roll in the course of most motions.
Fingertips may slide too, although we will assume in this
work that it is not the case.

Contrary to Chen and Kao’s relation between stiffnesses at
joint level and end-effector level [2], [3], the relation between
the finger stiffnesses and the resulting object-level stiffness is
not yet known, in the case that the contacts are not fixtures.
Yet such knowledge may be of valuable interest, as it would
for instance enable the design of a multi-fingered robot hand,
or of its stiffness control, in order to realize a certain desired
stiffness on the grasped object. So far, we are unaware of
studies that have adressed this problem.

B. Contribution

This paper provides the first insights into the modeling of
the total stiffness resulting at object level from the stiffness
of the fingers in the grasp.

Its first contribution is to prove that in a stiffness analysis,
the infinitesimal pose variations of the object and a distal
phalanx are linearly dependent one another. We provide an
expression of this linear map that shows that it depends on
the cartesian stiffness of the finger, on the contact force and
on the local geometries of the contacting surfaces.

Its second contribution is to formulate an expression of the
resulting stiffness Kobj as a function of the finger cartesian
stiffnesses Kdpi

. This expression also depends on the contact
forces and on the local geometries of the contacting surfaces.
Unfortunately, it is far from the elegant simplicity of the
congruence transformation that relates the joint stiffness and
cartesian stiffness of only one finger.

These two results are valid under the following model
hypotheses: all the bodies are rigid bodies, the contacts are



non-sliding point contacts with friction, rolling and twisting
of the contacts are possible, and they never break. We will
also need to assume the invertibility of a certain matrix.

C. Outline of the paper
The rest of this paper is as follows. We define our notations

and our model in section II; its hypotheses are clearly stated
and translated into our notations. We introduce in section III
the various equations needed by our modeling. Section IV
demonstrates the linear map between the infinitesimal pose
variations of the object and a distal phalanx, and section V
formulates the relation we are looking for between Kobj and
Kdpi

. Section VI gives numerical results in simulation, and
section VII concludes the paper.

II. MODEL AND NOTATIONS

A. Rigid body mechanics: twists and wrenches
We explain briefly a few notations from rigid body

mechanics. First, we let V aS2/S1
denote the twist, i.e. the

generalized velocity, of some rigid body S2 relatively to
some other rigid body S1, written in some frame a. We also
let W a

S1→S2
denote the wrench, i.e. the generalized force,

applied by the rigid body S1 to the rigid body S2, written
in the frame a:

V aS2/S1
=

(
vaA∈S2/S1

ωaS2/S1

)
W a
S1→S2

=

(
faS1→S2

ma
A,S1→S2

)
In these expressions, A is the origin of the frame a, so that
ma
A,S1→S2

is the moment in A applied by S1 to S2, written
in the basis a, and vaA∈S2/S1

is the velocity of A, considered
as a fixed point of S2, relatively to S1, written in the basis a.
The other components, faS1→S2

and ωaS2/S1
, are respectively

the force applied by S1 to S2 and the rotational velocity of
S2 relatively to S1, both written in the basis a; they do not
depend on the point at which the twist or wrench is written.
When writing twists, we often omit S1 if it is the reference
body, the “world”, i.e. for absolute twists: V aS2

= V aS2/ref
.

In our notations, the frame or basis specified at top-right
position is the frame or basis in which the quantity is written,
whatever the quantity. To write a twist or a wrench in another
frame, we use the following change of frame formulas:

V aS2/S1
= aAdbV

b
S2/S1

W a
S1→S2

= aAd−Tb W b
S1→S2

aAdb =

(aRb r̂aa,b
aRb

03,3
aRb

)
aAd−Tb =

( aRb 03,3

r̂aa,b
aRb

aRb

)
aAdb and aAd−Tb are called respectively adjoint and co-adjoint
matrices (of the rigid body transformation from frame a to
frame b). aRb is the rotation matrix of basis b with respect
to basis a, raa,b =

−−→
ABa is the vector between the origins

of the frames, written in basis a, and r̂aa,b is the following
skew-symmetric matrix, embedding the operation of left-
wise cross-product by vector ra,b, in a coordinates:

raa,b =

xy
z

 7→ r̂aa,b =

 0 −z y
z 0 −x
−y x 0


this matrix meets: ∀ u ∈ R3, r̂aa,bu

a = raa,b × ua

We let Π denote a matrix that selects the first component
of a twist or a wrench, for instance vaA∈S2/S1

= ΠV aS2/S1
,

and Π′ denote the one that selects the other component, as
in ma

A,S1→S2
= Π′W a

S1→S2
:

Π =
(
I3 03,3

)
Π′ =

(
03,3 I3

)
Similarly to the cross-product matrix r̂aa,b, we define the

following two matrices, relative to a twist and a wrench, and
by extension we also denote them with hats and refer to them
as cross-product matrices:“V aS2/S1

=

(
ω̂aS2/S1

v̂aA∈S2/S1

03,3 ω̂aS2/S1

)

Ŵ a
S1→S2

=

(
03,3 f̂aS1→S2

f̂aS1→S2
m̂a
A,S1→S2

)
It is worth noting that the wrench-relative cross-product
matrix is skew-symmetric: (Ŵ a

S1→S2
)T = −Ŵ a

S1→S2
.

We also formulate an infinitesimal displacement δXa
S2/S1

of body S2 relatively to body S1, during dt, and written in
frame a, as:

δXa
S2/S1

= V aS2/S1
dt =

(
δxaA∈S2/S1

δθaS2/S1

)
The vector δθS2/S1

is along the instantaneous axis of rotation
of body S2 relatively to body S1.

In the rest of this paper, some quantities miss a frame
specification in the top-right position, for brevity of the
expressions. When unspecified, a frame is the most “natural”
frame for the quantity. For instance, we have already encoun-
tered Kdpi

and Kobj , written respectively in the phalanx and
object body-fixed frames, that is to say Kdpi

= K
dpi

dpi
and

Kobj = Kobj
obj . Further, we will introduce the infinitesimal

deflections in the finger contact forces and total contact force,
and note them respectively dWdpi→obj = dW

dpi

dpi→obj and
dWdp→obj = dW obj

dp→obj .

B. Hand and object models

The robot grasp we consider consists of nf hard-fingers
grasping a rigid object in three-dimensional space at nf point
contacts with dry friction. Finger i ∈ [|1, nf |] is illustrated on
figure 1. We place no restriction on the number of phalanxes
and joints, and let ndof,i denote the number of degrees of
freedom of finger i.

Fig. 1. Finger i, i ∈ [|1, nf |]



We let qi ∈ Rndof,i denote the articular configuration of
finger i. dpi denotes both the distal phalanx and its main
frame, located at the phalanx center of mass. ref is an inertial
reference frame and obj is the object, or its frame. ci is both
the contact point and a contact frame at the object/finger
interface, with outward-pointing normal with respect to the
distal phalanx.

C. Contact model hypotheses

In this paper, we assume that the point contacts are non-
sliding and that rolling (on the tangent plane) and twisting
(around the contact normal) are free. We also assume that
the contacts always hold.

We note V cidpi/obj
the twist of the relative motion between

the phalanx and the object. We also note vci∈dpi/obj
and

ωdpi/obj
the translational and rotational velocities of this

relative motion, velocities of which different components, in
ci coordinates, are commonly known as the sliding, rolling,
twisting and breaking velocities between the phalanx and the
object. Namely:

(vcici∈dpi/obj
)x,y = sliding (ωcidpi/obj

)x,y = rolling

(vcici∈dpi/obj
)z = breaking (ωcidpi/obj

)z = twisting

The notations ()x, ()y , ()z , ()x,y and so on stand of course
for the corresponding coordinates of the vector they enclose,
z being the normal in the case of the contact frame.

The assumption of non-sliding and the condition of non-
breaking combine into:

vci∈dpi/obj
= 03,1

in other words: ΠV cidpi/obj
= 03,1

Free rolling and free twisting imply that no moment can
be applied by the finger on the object at the contact point:

mci,dpi→obj = 03,1

in other words: Π′W ci
dpi→obj = 03,1

III. MODELING EQUATIONS

A. Basic equations

In this work, we will not use joint stiffnesses, that is to
say we will remain at cartesian phalanx-level and object-
level. The stiffness mappings at these levels are pictured in
figure 2, equations (1) and (2).

In this figure, (1) and (2) are stiffness definitions, (3) is
the differentiation of Wdp→obj =

∑nf
i=1W

obj
dpi→obj after the

change of frame W obj
dpi→obj = objAd−Tdpi

W
dpi

dpi→obj , (4) is a
mere velocity-addition law and (5) is the assumption of non-
sliding combined with the condition of non-breaking, see
section II-C above.

As explained in the introduction, we are interested in the
relation between Kobj and Kdpi

. Namely, we look for Kobj

as a function of the different Kdpi
.

In order to get this relation (1), we will need no more
than six modeling equations: the basic equations (2) to (5),
the assumption of free rolling and free twisting at contact

in section II-C, and a kinematic equation (9) derived in sec-
tion III-B from Montana’s kinematic equations of contact [6].

These modeling equations will enable us to find a linear
relation between dWdp→obj and δXobj , therefore proving
constructively the existence of a stiffness relation (1) in
cartesian space, at object level. At the same time, we will
get Kobj as a function of the different Kdpi

.

B. A kinematic equation of pure rolling contact

In order to describe the motion of the contact point ci on
the phalanx dpi, we define the following twist:

V cici/dpi
=

(
vcici/dpi

ωcici/dpi

)
At first glance, one could think that such a twist makes little
sense: the ci in ci/dpi is supposed to be a rigid body, but
there is no such rigid body at the interface between the
finger and the object; besides, the linear velocity should
be vcici∈ci/dpi

, which is hardly intelligible. In fact, the ci
in ci/dpi means here a mere virtual rigid body to which
the frame ci is rigidly linked (hence the same notation).
Therefore, the first ci in vcici∈ci/dpi

is the contact point, the
second is the virtual body and the third is the frame of
expression: this velocity is indeed the velocity of the contact
point ci in its motion on the distal phalanx dpi, written in
the basis ci, and we rather note it vcici/dpi

. Similarly, ωcici/dpi

is the rotational velocity of the contact frame ci relatively to
dpi, written in the basis ci.

This being clear, it is possible to translate into our nota-
tions the kinematic equations of contact proven by [6]. These
equations are a system of identities that relate the velocities
of the contact point on the distal phalanx (vci/dpi

) and on
the object (would be vci/obj , however we do not use it)
with the translational and rotational velocities of the relative
motion between the phalanx and the object (velocities that we
have noted vci∈dpi/obj

and ωdpi/obj
, and of which different

components are the sliding, rolling, twisting and breaking
velocities). These relations between the motion of the contact
point across the surfaces in contact and the relative motion
of the surfaces are functions of the geometric parameters of
the surfaces only, namely, their metrics, curvature forms and
torsion forms.

As we cannot re-expose all the concepts from differential
geometry that are necessary to the total understanding of the
kinematic equations of contact, we refer the reader to [6],
or any subsequent reference book on multi-fingered manipu-
lation that deals with the kinematics of rolling contacts, for
instance [7] or [8].

In our notations, the first kinematic equation of contact
(and the only one we will need) reads [6, equation 17]:

(vcici/dpi
)x,y = (Γcidpi

+ Γciobj )
−1 . . .

. . .

[(
−(ωcidpi/obj

)y
(ωcidpi/obj

)x

)
− Γciobj

(
(vcici∈dpi/obj

)x
(vcici∈dpi/obj

)y

)]
(6)



change in distal
phalanx position

δXdpi

change in contact
forces

dWdpi→obj

change in object
position
δXobj

change in total
contact force
dWdp→obj

dWdp→obj = −Kobj δXobj

(1)

dWdpi→obj = −Kdpi
δXdpi

(2)

with Kdpi
defined by [3]

dWdp→obj =

nf∑
i=1

d(
obj
Ad
−T
dpi

)Wdpi→obj

+
obj
Ad
−T
dpi

dWdpi→obj

(3)
δX

ci
dpi

= δX
ci
obj + δX

ci
dpi/obj

(4)

ΠδX
ci
dpi

= ΠδX
ci
obj (5)

Fig. 2. Stiffness mappings in cartesian space, at phalanx and object levels

In this equation, Γcidpi
and Γciobj denote (2,2) matrices that are

the curvature forms of the surfaces, at the point of contact
and relatively to the x and y axes of the contact frame ci.

The original formulation of (6) also involves the metric
tensor of the phalanx surface, however this tensor is a
function of the local parameterization chosen for the surface
around the contact point. In our case, we can choose at each
time t a convenient, orthonormal local coordinate chart to
parameterize the phalanx surface around the contact point.
This yields a metric tensor equal to the identity matrix I2.

Because of non-sliding, (6) may be simplified as:

(vcici/dpi
)x,y = (Γcidpi

+ Γciobj )
−1

(
0 −1
1 0

)
(ωcidpi/obj

)x,y (7)

Since the contact point always remains on the surface of the
phalanx (!), we have (vcici/dpi

)z = 0, an identity that enables
the rewriting of (7) as:

vcici/dpi
=

(Γcidpi
+ Γciobj )

−1

(
0 −1
1 0

)
02,1

01,2 0

ωcidpi/obj

def
= Γ̂dpi,obj ω

ci
dpi/obj

(8)

Using the matrices Π and Π′ defined in section II-A, (8) may
be rewritten as:

ΠV cici/dpi
= Γ̂dpi,objΠ

′V cidpi/obj

Last, we multiply by dt and use the velocity-addition law (4):

ΠδXci
ci/dpi

= Γ̂dpi,objΠ
′(δXci

dpi
− δXci

obj ) (9)

C. Two identities about the contact forces
An obvious result of free rolling and free twisting is (see

section II-C):
Π′dW ci

dpi→obj = 03,1 (10)

Another consequence is that the contact wrench at con-
tact i reads, in matrix form and in ci coordinates:

Ŵ ci
dpi→obj =

(
03,3 f̂ cidpi→obj

f̂ cidpi→obj 03,3

)

and thanks to this specific, anti-diagonal form, it meets the
following identity (easy to verify):

Π′Ŵ ci
dpi→obj = Π′Ŵ ci

dpi→objΠ
TΠ (11)

IV. THE LINEAR MAP BETWEEN δXobj AND δXdpi

Now we use the modeling equations enumerated in sec-
tion III to prove the first contribution of this paper: the in-
finitesimal pose variations of the object and a distal phalanx,
δXobj and δXdpi

, are linearly dependent one another. We
provide an expression of this linear map, in the coordinates
of the contact frame, that is to say in terms of δXci

obj and
δXci

dpi
(only appropriate adjoints are needed to write this

linear relation in other coordinates).

A. An expression of dW ci
dpi→obj

Wdpi→obj is the contact wrench applied by finger i on
the object; its expressions in the contact frame ci and in the
distal phalanx frame dpi are related through the following
change of frame:

W ci
dpi→obj = ciAd−Tdpi

Wdpi→obj

Differentiating this relation and using the definition of
phalanx-level stiffness (2), as well as a simple change of
frame, yield:

dW ci
dpi→obj = d(ciAd−Tdpi

)Wdpi→obj

− ciAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

(12)

Then we use the property (23) proven in the appendix to
rewrite (12) as:

dW ci
dpi→obj = Ŵ ci

dpi→obj δX
ci
ci/dpi

− ciAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

(13)

It is worth understanding that in the notation δXci
ci/dpi

,
according to (23), the ci in ci/dpi is a rigid body to which
the frame ci is rigidly linked. As we said previously, there is
no such rigid body except a virtual one: the δXci

ci/dpi
coming

from the application of (23) is exactly the one we used in



section III-B. Consequently, we are entitled to use (9), proven
in this section. We will also use the previous developments
(10) and (11).

B. A first relation between δXci
dpi

and δXci
obj

First we pre-multiply (13) by Π′ and use (10) to write:

03,1 = Π′Ŵ ci
dpi→obj δX

ci
ci/dpi

−Π′ciAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

Thanks to (11), this equation becomes:

03,1 = Π′Ŵ ci
dpi→objΠ

TΠδXci
ci/dpi

−Π′ciAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

Then (9) yields:

03,1 = Π′Ŵ ci
dpi→objΠ

T Γ̂dpi,objΠ
′(δXci

dpi
− δXci

obj )

−Π′ciAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

Eventually we group the resulting terms:

03,1 = (Π′Ŵ ci
dpi→objΠ

T Γ̂dpi,objΠ
′ − . . .

. . .Π′ciAd−Tdpi
Kdpi

dpiAdci)δX
ci
dpi

−Π′Ŵ ci
dpi→objΠ

T Γ̂dpi,objΠ
′δXci

obj (14)

C. A second relation between δXci
dpi

and δXci
obj

Equation (14) is a system of three scalar linear equations
relating the (6,1) vectors δXci

dpi
and δXci

obj : it is not sufficient
to derive the one as a linear function of the other.

However, δXci
dpi

and δXci
obj are also related through the

equation of non-sliding (5), that provides three other scalar
linear equations:

ΠδXci
dpi

= ΠδXci
obj (15)

D. Conclusion

Eventually, with (14) and (15) we have a system of six
scalar linear equations, (16).

Let us define the following matrices:

Ξdpi
=

(
Π′Ŵ ci

dpi→objΠ
T Γ̂dpi,objΠ

′ −Π′ciAd−Tdpi
Kdpi

dpiAdci
Π

)

Ξobj,i =

(
Π′Ŵ ci

dpi→objΠ
T Γ̂dpi,objΠ

′

Π

)
Equation (16) may be rewritten:

Ξdpi
δXci

dpi
− Ξobj,iδX

ci
obj = 06,1 (17)

To solve this system in the variables δXci
dpi

, we assume that
the matrix Ξdpi

is invertible. We get the following expression
of δXci

dpi
as a linear function of δXci

obj , which is what we
were looking for in this section:

δXci
dpi

= Ξ−1
dpi

Ξobj,iδX
ci
obj (18)

V. EXPRESSION OF Kobj AS A FUNCTION OF Kdpi

In this section, we use the basic modeling equations of
section III-A and the previous result (18) to prove the main
contribution of this paper: an expression of the cartesian
object-level stiffness matrix Kobj as a function of finger
cartesian stiffness matrices Kdpi

.

A. An expression of dWdp→obj

First we use (2), (3), and a simple change of frame to get
the following expression of dWdp→obj :

dWdp→obj =

nf∑
i=1

d(objAd−Tdpi
)Wdpi→obj

− objAd−Tdpi
Kdpi

dpiAdciδX
ci
dpi

(19)

Then we use successively the property (23) proven in the
appendix, a change of frame and the velocity-addition law (4)
to rewrite the first term of the right-hand side of (19) as:

d(objAd−Tdpi
)Wdpi→obj = Ŵ obj

dpi→obj δX
obj
obj/dpi

= Ŵ obj
dpi→obj

objAdciδX
ci
obj/dpi

= Ŵ obj
dpi→obj

objAdci(δX
ci
obj − δX

ci
dpi

)

Consequently, (19) depends linearly on δXci
obj and δXci

dpi
:

dWdp→obj =

nf∑
i=1

Ŵ obj
dpi→obj

objAdciδX
ci
obj (20)

− (objAd−Tdpi
Kdpi

dpiAdci + Ŵ obj
dpi→obj

objAdci)δX
ci
dpi

B. Conclusion

We replace (18) into (20) and get (21). This proves
constructively the existence of the stiffness relation (1) in
cartesian space, at object level (under the hypotheses of
our model and the assumption of invertibility of Ξdpi

).
Eventually, we also get Kobj as a function of Kdpi

(22).

C. Remarks

We can see in the expression of Kobj that it embeds a
variety of contributions:
• The stiffnesses of the fingers of course, through the

various Kdpi
(also present in Ξdpi

). These cartesian
stiffness matrices themselves embed the stiffnesses of
the joints and the contributions to stiffness of the
changes in the geometry of the fingers as they move
under the effect of the contact forces [2], [3].

• The contact forces contribute a second time to Kobj

through the Ŵdpi→obj (also present in Ξdpi
and Ξobj,i).

• The relative curvatures, at the contact points, of the
surfaces of the fingers and object, contribute through
the terms Γ̂dpi,obj (also present in Ξdpi

and Ξobj,i).
• A number of lever arms, involved in transposing the

effects of the contact forces and finger cartesian stiff-
nesses, from the surface of the object or from the center
of the phalanxes to the center of mass of the object,
also contribute to Kobj through the various co-adjoint
matrices.



{
(Π′Ŵ ci

dpi→objΠ
T Γ̂dpi,objΠ

′ −Π′ciAd−Tdpi
Kdpi

dpiAdci)δX
ci
dpi
−Π′Ŵ ci

dpi→objΠ
T Γ̂dpi,objΠ

′δXci
obj = 03,1

ΠδXci
dpi
− ΠδXci

obj = 03,1

(16)

dWdp→obj =

nf∑
i=1

[
Ŵ obj

dpi→obj − (objAd−Tdpi
Kdpi

dpiAdci + Ŵ obj
dpi→obj

objAdci)Ξ
−1
dpi

Ξobj,i
ciAdobj

]
δXobj (21)

Kobj =

nf∑
i=1

[
(objAd−Tdpi

Kdpi

dpiAdci + Ŵ obj
dpi→obj

objAdci)Ξ
−1
dpi

Ξobj,i
ciAdobj − Ŵ obj

dpi→obj

]
(22)

Stiffness matrices in robotics are usually defined as sym-
metric, positive definite matrices, or at least positive semi-
definite. It is not obvious from the expression (22) whether
it is the case for Kobj . Besides, there is a case for generaly
asymmetric stiffness matrices, only a submatrix of which
would be positive (semi)-definite:
• Asymmetric cartesian stiffness matrices were intro-

duced and discussed during the 1990s by various re-
searchers, in particular Griffis, Duffy and Pigoski [9],
[10], Ciblak and Lipkin [11], and Žefran, Kumar and
Howard [12]–[14]. In turn, Chen, Li and Kao exposed
in a series of papers why the cartesian stiffness matrix
yielded by their conservative congruence transformation
is not symmetric in general [15]–[21].
The previous works concluded that in general, a carte-
sian (6, 6) stiffness matrix at end-effector level is asym-
metric. It becomes symmetric when the manipulator
is unloaded; or when the twists, and consequently the
stiffness matrix, are expressed in a coordinate basis of
the twist space, rather than in the usual non-coordinate
basis (consisting of three translational velocities and
three rotational velocities around the same axes); or
when it is restricted to its (3, 3) translational part.
In our modeling, we used the usual, non-coordinate
basis of the twist space, and there is a load at the end-
effectors of the fingers. As a result the matrices Kdpi

are not expected to be symmetric. Should the resulting
Kobj be always symmetric then, it would be surprising.

• Depending on the finger structure (number of degrees
of freedom and how their axes are arranged) and on the
grasp geometry, there may be cases where the distal
phalanxes cannot move in the six directions of the twist
space. A straightforward example is a planar finger:
its distal phalanx has three blocked directions, one in
translation and two in rotation. Such blocked directions
are directions of infinite stiffness, and the corresponding
terms in the cartesian Kdpi

would be +∞. Likewise,
a planar two-finger pinch grasp would have a resulting
Kobj with the same blocked directions.
As a result, neither Kobj nor Kdpi

would qualify as
stiffness matrices in the canonical sense of a symmetric,
positive (semi)-definite matrix. Yet it remains possible
that adequate submatrices correctly describe the elastic
behavior of the grasp realized by the stiff fingers.
We should however note that the assumptions of free

rolling and free twisting we made directly limit the hap-
pening of cases like the one we are speaking about. For
such cases outside our model hypotheses, the expression
of Kobj , or of what would be in case a stiffness relation
does not exist, is still to find.

From these remarks, it appears that there is still a lot of
work ahead to investigate completely the structure, properties
and physical meaning of the cartesian object-level stiffness.

VI. NUMERICAL INSIGHTS

As a first numerical test of our modeling, we designed
a simple simulated experiment with ARBORIS [22], the
dynamical engine we used in our previous works [23], [24].

This test involves a spherical object of radius robj =
2 cm grasped by a tetrahedron grasp of four “cartesian”
fingers, namely spheres of radius rdp = 5 mm and cartesian
stiffnesses Kdpi

= diag(kdp,trI3, kdp,rotI3), for various
values of kdp,tr and kdp,rot . The object is subject to small
displacements in the six directions of space (1 mm for
the three translations, 10 ◦ for the three rotations), and we
compare the resulting dWdp→obj in the simulation with the
one from (21). The results are summarized in figure 3.

It appears that the dWdp→obj predicted by (21), i.e. by
our modeling of Kobj , correctly match the simulated ones.

VII. CONCLUSION

A. Summary

In this paper, we demonstrated an expression of the carte-
sian matrix that models the behavior of an object grasped by
a multi-fingered robot hand with stiff joints. We showed that
this expression is a non-linear function of the finger cartesian
stiffness matrices and depends also on the contact forces and
local geometries of the contacting surfaces. The result we
propose is valid under the assumptions that the phalanxes
and the object are rigid bodies, that the contacts are non-
sliding, non-breaking point contacts with free rolling and
free twisting, and that a certain matrix encountered during
the modeling is invertible.

B. Future work

We already underlined in section V-C the work ahead in
the understanding of the structure, properties and physical
meaning of the cartesian object-level stiffness matrix. In
particular, we should investigate what happens when model
hypotheses are removed or at least restricted. The motivation



(a) δXobj = 1 mm along x (b) δXobj = 10 ◦ around x

(c) δXobj = 1 mm along y (d) δXobj = 10 ◦ around y

(e) δXobj = 1 mm along z (f) δXobj = 10 ◦ around z

Fig. 3. dWdp→obj such that predicted by (21) (boxes) and returned by the simulation (ticks), for various values of kdp,tr (top horizontal axis) and kdp,rot
(bottom horizontal axis). We tried six different cases of δXobj ; in each case, the left subplot is the force part of dWdp→obj (in N) and the right subplot
is its moment part (in Nm). Blue, green, red correspond respectively to the x, y, z coordinates of these force and moment parts, in the object basis
(blue boxes and ticks are sometimes hidden by the green or red ones at the zero horizontal line). Ticks and boxes coincide, meaning that the values for
dWdp→obj predicted by (21), i.e. by our modeling of Kobj , correctly match the simulated (experimental) ones.

for that is that we all know of fingers whose distal phalanxes
have indeed limited, if not blocked, directions of motion, and
whose grasps are still very able to produce an object-level
stiffness without any blocked direction: our very own fingers.

The invertibility of Ξdpi
is also an issue to study. More

numerical simulations, if not actual experiments, should be
done to validate or challenge our modeling. In particular,
stiffness control of a multi-fingered grasp, based on the
expression we propose for Kobj , should be tried out.
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APPENDIX

In this appendix, we prove the following property, used
twice in this document: let S1, S2, Sa and Sb denote four
rigid bodies and a and b denote two frames rigidly linked to
Sa and Sb respectively. Then:

d

dt
(aAd−Tb )W b

S2→S1
= Ŵ a

S2→S1
V aSa/Sb

(23)

The proof we propose here relies on three preliminary
results from rigid body mechanics, that we recall in the next
three sections, with only outlines of their demonstrations
because of place constraints.

A. First lemma: change of frame of a twist-relative cross-
product matrix

First of all, we recall the change of basis formula for a
(3,3) cross-product matrix: r̂a = aRbr̂

bbRa. There is a similar
result about the change of frame formula for a twist-relative
cross-product matrix:“V aS2/S1

= aAdb“V bS2/S1

bAda (24)

The proof is elementary, though not straightforward. We
start by calculating the right-hand side of (24). After a num-
ber of changes of bases for various cross-product matrices:

aAdb“V bS2/S1

bAda = . . .(
ω̂aS2/S1

v̂aB∈S2/S1
+ r̂aa,bω̂

a
S2/S1

− ω̂aS2/S1
r̂aa,b

03,3 ω̂aS2/S1

)
From Jacobi identity it is possible to prove r̂aa,bω̂

a
S2/S1

−
ω̂aS2/S1

r̂aa,b = (raa,b×ωaS2/S1
)̂. Indeed, right-multiplying this

later identity by some vector u yields raa,b×(ωaS2/S1
×ua) +

ωaS2/S1
×(ua×raa,b) = (raa,b×ωaS2/S1

)×ua in a few rewritings.
Consequently, the top-right term in the previous matrix

may be rewriten (vaB∈S2/S1
+ raa,b × ωaS2/S1

)̂ = v̂aA∈S2/S1
.

B. Second lemma: a remarkable identity
We have the following remarkable identity:

(“V aS2/S1
)TW a

S3→S4
+ (Ŵ a

S3→S4
)TV aS2/S1

= 06,1 (25)

The proof consists in trivial matrix calculus and using the
skew-symmetry of ŴS3→S4

.

C. Third lemma: time derivative of an adjoint or co-adjoint
matrix

In this section, contrary to the two previous ones, the rigid
bodies S1 and S2 are specific: they are rigidly linked to the
frames a and b respectively, so we denote them Sa and Sb.

The time derivative of the adjoint matrix aAdb has the
following expression:

d

dt
aAdb = aAdb“V bSb/Sa

The proof uses the fact that v̂bB∈Sb/Sa
= bRav̂

a
B∈Sb/Sa

aRb=
bRa ˆ̇raa,b

aRb and ω̂bSb/Sa
= bRa

aṘb to decompose d
dt
aAdb into

the product of aAdb and “V bSb/Sa
.

It is possible to prove similarly the following expression
of the time derivative of the inverse adjoint matrix aAd−1

b :

d

dt
(aAd−1

b ) = −“V bSb/Sa

aAd−1
b (26)

D. Conclusion: proof of the property
First we transpose (26) and get:

d

dt
(aAd−Tb ) = −aAd−Tb (“V bSb/Sa

)T

Then we use (24) to rewrite this equation as:

d(aAd−Tb ) = −aAd−Tb (bAda“V aSb/Sa

aAdb)
T dt

= −(“V aSb/Sa
)T aAd−Tb dt

From this identity and the lemma (25), we deduce:

d(aAd−Tb )W b
S2→S1

= −(“V aSb/Sa
)TW a

S2→S1
dt

= (Ŵ a
S2→S1

)TV aSb/Sa
dt

And as ŴS2→S1 is skew-symmetric:

d(aAd−Tb )W b
S2→S1

= −Ŵ a
S2→S1

V aSb/Sa
dt

= Ŵ a
S2→S1

V aSa/Sb
dt

This last identity is (23).


